

Surface radiation budget of the Baltic Sea from satellite data

<u>T. Zapadka¹</u>, D. Stoltmann¹, M. Paszkuta², Maciej Sokólski³ ¹Pomeranian University in Słupsk ²University of Gdańsk ³Institute of Oceanology PAS in Sopot zapad@apsl.edu.pl

Outline

- Satellite Monitoring of the Baltic Sea environment (SatBałtyk)
- ✓ www.satbaltyk.eu
- The possibility of applying satellite information and other alternative sources to estimate the net radiation fluxes for the Baltic Sea
- ✓ Components of the radiation budget
- ✓ Input data and format
- ✓ Algorithms and validation
- ✓ Products
- ✓ Summary

Radiation budget at the sea surface

$$NET = SW \uparrow \downarrow + LW \uparrow \downarrow$$

Net shortwave radiation

 $SW \uparrow \downarrow = SW \downarrow -SW \uparrow$

Net longwave radiation $LW \uparrow \downarrow = LW \uparrow -LW \downarrow$

downward and upward shortwave irradiance

$$SW \downarrow = \int_{0.3\,\mu m}^{3\,\mu m} E_d(\lambda, z=0) d\lambda$$

$$SW \uparrow = \int_{0.3\,\mu m}^{3\,\mu m} E_u(\lambda, z=0) d\lambda$$

downward and upward longwave irradiance

$$LW \downarrow = \int_{2\pi}^{100\,\mu m} E_d(\lambda, z=0) d\lambda$$

3 µm

Radiation budget at the sea surface

Radiation budget at the sea surface

Pyrgeometers and pyranometers s/y Oceania Baltic Sea

- downward shortwave irradiance SW_d LW - downward longwave irradiance LW_d

SW - upward shortwave irradiance SW, LW - upward longwave irradiance LW,

The date used in the analyzes

Satellite

- MSG/SEVIRI
 ✓ Cloud mask
- Cloudiness parameter
- AVHRR
- ✓ Ozon content
- ✓ AOT
- ✓ Sea surface temperature

Model M3D,UM

 ✓ Sea surface temperature
 ✓ Air temperature
 ✓ Water vapour

 $\checkmark SW_d$ $\checkmark SW_u$ $\checkmark LW_d$ $\checkmark LW_u$

Different formats!

SatBallyr ****

- Area: Baltic Sea
- Projection:
- ✓ Lambert_Azimutal_Equal_Area
- Resolution:
- ✓ 4 km (352X320 pixels)
- Generation frequency:
- ✓ SEVIRI 15 min
- ✓ M3D, UM model 60 min
- The basic grid for SatBałtyk 1 km

Comparison satellite and in situ data

Estimation of the radiation fluxes

Algorithms and validation

Downward shortwave radiation flux SW_d

• Algorithm (Krężel et al. 2008 model SOLRAD)

 $SW_d = SW_{d,0}T_{cloud}$

✓ T_{cloud} – cloud transmittance ✓ $SW_{d,0}$ - for clear sky

- Input data
- ✓ MSG/SEVIRI (VIS channels) cloud mask, cloudiness coefficient
- ✓ NOAA/AVHRR Aerosol Optical Thickness (AOT), Ozon
- ✓ UM model vapour pressure

Validation

bias : - 18 Wm⁻² stdev : 80 Wm⁻² R : 0.91

- In situ data SW_d were measured during cruises on the southern Baltic Sea (2011- 2012)
- Problem with cloudy sky

Upward shortwave radiation flux SW_u

 $SW_{u} = SW_{d}A_{s}$ $A_{s} = aT + b + (1 + cT - d) \exp[-(90 - SZA)(e/T + f]]$ $T = \frac{SW_{d}[h = 0]}{SW_{d}[h = TOA]}$

- A_s sea albedo (Payne 1979 function adopted to Baltic Sea area, modified by Rozwadowska 1992)
- SZA solar zenith angle
- SW_d as input data from algorithm SOLRAD
- a,b,c,d,e,f modified empirical constants

bias : 2 Wm⁻² stdev : 8 Wm⁻² R : 0.77

- In situ data SW_d measured during cruises on the Southern Baltic Sea (2011- 2013)
- Problem for rough sea and low position of the sun

Validation

bias : - 5 Wm⁻² stdev : 17 Wm⁻² R : 0.84 bias : 5.2 Wm⁻² stdev : 28 Wm⁻² R : 0.71

Validation

bias : -0.2 Wm⁻² stdev : 23 Wm⁻² R : 0.77

Problems: Cloud identification

Upward longwave radiation flux LW_u

Cloudy conditions dominate the Baltic Sea during 2/3 of the year

- The temperature of the sea changes very slowly
- Cloud mask must be correct

bias : -1.3 Wm⁻² stdev : 4.5 Wm⁻² R : 0.99

✓ For clear sky

Validation LW_{u,real} versus LW_{u,model} from M3D +AVHRR

bias : -5.3 Wm⁻² stdev : 7.3 Wm⁻² R : 0.97 ✓ The biggest errors for a coastal zone
 ✓ Pyrgeometer CGR 3

Products

- Instantaneous maps
- $\checkmark SW_d$; SW_u every 15 minutes for daytime
- $\checkmark LW_u$ c. 8 maps per day
- $\checkmark LW_d$ every 1 hour
- Daily maps the main product of SatBałtyk
- Monthly
- Annual

Products – the average daily

Products – the average annual

 LW_u [W m⁻²]

369

-360

-350

-341

332

14

12

10

8

 SW_u [W m⁻²]

Products – the avarage annual

Products – the average annual

NET=48 Wm⁻²

NET=54 Wm⁻²

Summary

- Presented methods are appropriate to estimate shortwave and longwave radiation budget components
- \checkmark the statistical errors and correlation coefficient are acceptable: for

instantaneous data

- $\gg SW_d = 80 \text{ Wm}^{-2} \text{ R} = 0.91; \quad SW_u = 11 \text{ Wm}^{-2} \text{ R} = 0.87$
- $\succ LW_d = 23 \text{ Wm}^{-2} \text{ R}=0.77; \quad LW_u = 4.5 \text{ Wm}^{-2} \text{ R}=0.97$

\checkmark The average annual:

	<i>NET</i> [Wm ⁻²]	<i>SW_d</i> [Wm ⁻²]	<i>SW_u</i> [Wm ⁻²]	<i>LW_d</i> [Wm ⁻²]	<i>LW_u</i> [Wm ⁻²]
2011	48	110	11	301	352
2012	54	116	12	302	352

7th Study Conference on Baltex Borgholm,

Island of Öland, Sweden, 10 - 14 June 2013

Major causes of errors

- difficulty with determining cloudless pixels $T_s = T_{cloud}$ (algorithm identifies the clouds as the sea or vice versa)
- problems with identification of clouds and mask cloud
- a few cloud levels not identifiable
- empirical measurements

Thank you for your attention

NET_{surf} = 51(102) Wm⁻²

Dziękuję

 $SW_{u,surf} = 12(30) \text{ Wm}^{-2}$

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND

www.satbaltyk.eu www.apsl.edu.pl zapad@apsl.edu.pl

 $LW_{u,surf} = 352(390) \text{ Wm}^{-2}$

 $LW_{d,surf} = 301(324) \text{ Wm}^{-2}$